We study the theoretical properties of image denoising via total variation penalized least-squares. We define the total vatiation in terms of the two-dimensional total discrete derivative of the image and show that it gives rise to denoised images that are piecewise constant on rectangular sets. We prove that, if the true image is piecewise constant on just a few rectangular sets, the denoised image converges to the true image at a parametric rate, up to a log factor. More generally, we show that the denoised image enjoys oracle properties, that is, it is almost as good as if some aspects of the true image were known. In other words, image denoising with total variation regularization leads to an adaptive reconstruction of the true image.


翻译:我们研究图像通过完全变异而脱色的理论特性, 以最小平方。 我们用图像的二维全离散衍生物来定义图像的总饱和度, 并显示它会产生在矩形组中不折不扣的无名图像。 我们证明, 如果真实图像在几组矩形组中保持片度不变, 则除色图像会以参数速与真实图像相融合, 直至一个日志系数。 更一般地说, 我们显示, 被除色图像的特性与真实图像的某些方面相似。 换句话说, 图像除色与全部变异的正规化导致真实图像的适应性重建 。

1
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
12+阅读 · 2020年8月3日
Arxiv
5+阅读 · 2018年10月11日
Arxiv
7+阅读 · 2018年1月21日
Arxiv
9+阅读 · 2018年1月4日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员