Prognostic information is essential for decision-making in breast cancer management. Recently trials have predominantly focused on genomic prognostication tools, even though clinicopathological prognostication is less costly and more widely accessible. Machine learning (ML), transfer learning and ensemble integration offer opportunities to build robust prognostication frameworks. We evaluate this potential to improve survival prognostication in breast cancer by comparing de-novo ML, transfer learning from a pre-trained prognostic tool and ensemble integration. Data from the MA.27 trial was used for model training, with external validation on the TEAM trial and a SEER cohort. Transfer learning was applied by fine-tuning the pre-trained prognostic tool PREDICT v3, de-novo ML included Random Survival Forests and Extreme Gradient Boosting, and ensemble integration was realized through a weighted sum of model predictions. Transfer learning, de-novo RSF, and ensemble integration improved calibration in MA.27 over the pre-trained model (ICI reduced from 0.042 in PREDICT v3 to <=0.007) while discrimination remained comparable (AUC increased from 0.738 in PREDICT v3 to 0.744-0.799). Invalid PREDICT v3 predictions were observed in 23.8-25.8% of MA.27 individuals due to missing information. In contrast, ML models and ensemble integration could predict survival regardless of missing information. Across all models, patient age, nodal status, pathological grading and tumor size had the highest SHAP values, indicating their importance for survival prognostication. External validation in SEER, but not in TEAM, confirmed the benefits of transfer learning, RSF and ensemble integration. This study demonstrates that transfer learning, de-novo RSF, and ensemble integration can improve prognostication in situations where relevant information for PREDICT v3 is lacking or where a dataset shift is likely.
翻译:暂无翻译