Drawing from memory the face of a friend you have not seen in years is a difficult task. However, if you happen to cross paths, you would easily recognize each other. The biological memory is equipped with an impressive compression algorithm that can store the essential, and then infer the details to match perception. The Willshaw Memory is a simple abstract model for cortical computations which implements mechanisms of biological memories. Using our recently proposed sparse coding prescription for visual patterns [34], this model can store and retrieve an impressive amount of real-world data in a fault-tolerant manner. In this paper, we extend the capabilities of the basic Associative Memory Model by using a Multiple-Modality framework. In this setting, the memory stores several modalities (e.g., visual, or textual) of each pattern simultaneously. After training, the memory can be used to infer missing modalities when just a subset is perceived. Using a simple encoder-memory decoder architecture, and a newly proposed iterative retrieval algorithm for the Willshaw Model, we perform experiments on the MNIST dataset. By storing both the images and labels as modalities, a single Memory can be used not only to retrieve and complete patterns but also to classify and generate new ones. We further discuss how this model could be used for other learning tasks, thus serving as a biologically-inspired framework for learning.


翻译:从多年未见的朋友的记忆中绘制其面貌是一个困难的任务。 但是, 如果您碰巧遇到交叉路径, 您就会很容易认出对方。 生物记忆中包含一个令人印象深刻的压缩算法, 可以同时存储必要内容, 然后推断细节来匹配感知。 Willshaw Memory 是一个简单的皮层计算抽象模型, 用来执行生物记忆机制。 使用我们最近提议的关于视觉模式的稀疏编码处方[ 34], 这个模型可以以错误容忍的方式存储和检索大量真实世界数据。 在本文中, 我们通过使用多模式框架扩展基本集成记忆模型的能力。 在此设置中, 记忆中存储着每个模式的几种模式( 如视觉或文字) 。 训练后, 记忆可以用来在看到一个子集时推断缺失的模式。 使用一个简单的编码- 模版解码结构, 以及一个新的提议的威尔肖模型的迭代检索算算法, 我们通过使用多功能化的模型进行实验。 通过存储图像和标签作为模式, 我们也可以使用一个单一的模型来进行学习。</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
14+阅读 · 2022年10月27日
A Survey on Data Augmentation for Text Classification
Arxiv
12+阅读 · 2019年3月14日
Arxiv
11+阅读 · 2018年10月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员