We investigate the problem of private read update write (PRUW) with heterogeneous storage constrained databases in federated submodel learning (FSL). In FSL a machine learning (ML) model is divided into multiple submodels based on different types of data used to train it. A given user downloads, updates and uploads the updates back to a single submodel of interest, based on the type of user's local data. With PRUW, the process of reading (downloading) and writing (uploading) is carried out such that information theoretic privacy of the updating submodel index and the values of updates is guaranteed. We consider the practical scenario where the submodels are stored in databases with arbitrary (heterogeneous) storage constraints, and provide a PRUW scheme with a storage mechanism that utilizes submodel partitioning and encoding to minimize the communication cost.
翻译:我们调查了私人阅读更新写作(PRUW)问题,在联合子模型学习(FSL)中,存储数据库有多种限制。在FSL中,机器学习(ML)模式根据用于培训它的不同类型数据分为多个子模型。给定用户下载、更新和上传更新内容,根据用户的本地数据类型,将更新内容反馈到单一的子模型中。与PRUW一起,进行读(下载)和写(加载)的过程,保证更新子模型索引和更新值的信息理论隐私。我们考虑了将这些子模型储存在具有任意(异质)存储限制的数据库中的实际情景,并提供了利用子模型分割和编码来尽量减少通信成本的存储机制。