Determining brain hemodynamics plays a critical role in the diagnosis and treatment of various cerebrovascular diseases. In this work, we put forth a physics-informed deep learning framework that augments sparse clinical measurements with fast computational fluid dynamics (CFD) simulations to generate physically consistent and high spatiotemporal resolution of brain hemodynamic parameters. Transcranial Doppler (TCD) ultrasound is one of the most common techniques in the current clinical workflow that enables noninvasive and instantaneous evaluation of blood flow velocity within the cerebral arteries. However, it is spatially limited to only a handful of locations across the cerebrovasculature due to the constrained accessibility through the skull's acoustic windows. Our deep learning framework employs in-vivo real-time TCD velocity measurements at several locations in the brain and the baseline vessel cross-sectional areas acquired from 3D angiography images, and provides high-resolution maps of velocity, area, and pressure in the entire vasculature. We validated the predictions of our model against in-vivo velocity measurements obtained via 4D flow MRI scans. We then showcased the clinical significance of this technique in diagnosing the cerebral vasospasm (CVS) by successfully predicting the changes in vasospastic local vessel diameters based on corresponding sparse velocities measurements. The key finding here is that the combined effects of uncertainties in outlet boundary condition subscription and modeling physics deficiencies render the conventional purely physics-based computational models unsuccessful in recovering accurate brain hemodynamics. Nonetheless, fusing these models with clinical measurements through a data-driven approach ameliorates predictions of brain hemodynamic variables.


翻译:在这项工作中,我们提出了一个基于物理的深层学习框架,通过快速计算流动态(CFD)模拟来增加稀少的临床测量,以快速计算流体动态(CFD)模拟来产生大脑感动参数的物理一致性和高空间瞬时分辨率。 外转多普勒(TCD)超声波是当前临床工作流程中最常用的技术之一,它使得能够对脑动脉内的血液流动速度进行非侵入性和即时评估。然而,由于骨骼声学窗口的可获取性有限,它仅局限于脑血管内偏差的少数地点。我们的深学习框架在大脑的若干地点和从 3D 血管造影图像中获取的基线船只交叉截取速测量,并且提供了速度、 区域以及整个血管血管内压的高分辨率地图。我们验证了我们模型的预测,而通过4D流流流流流的脑流体测量结果使大脑的精确度测量结果变得有限。我们随后通过直径观测了直径直径技术的直径直径观测了直径直径的直径直径直径。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
45+阅读 · 2020年10月31日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】ProbFlow:联合光流和不确定性估计
泡泡机器人SLAM
3+阅读 · 2018年10月26日
Science 一周论文导读 | 2018 年 8 月 4 日
科研圈
7+阅读 · 2018年8月11日
【泡泡一分钟】基于建筑立面对称性的语义分析(3dv-56)
泡泡机器人SLAM
3+阅读 · 2018年3月14日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
VIP会员
相关资讯
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】ProbFlow:联合光流和不确定性估计
泡泡机器人SLAM
3+阅读 · 2018年10月26日
Science 一周论文导读 | 2018 年 8 月 4 日
科研圈
7+阅读 · 2018年8月11日
【泡泡一分钟】基于建筑立面对称性的语义分析(3dv-56)
泡泡机器人SLAM
3+阅读 · 2018年3月14日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员