Figuring out the right airfoil is a crucial step in the preliminary stage of any aerial vehicle design, as its shape directly affects the overall aerodynamic characteristics of the aircraft or rotorcraft. Besides being a measure of performance, the aerodynamic coefficients are used to design additional subsystems such as a flight control system, or predict complex dynamic phenomena such as aeroelastic instability. The coefficients in question can either be obtained experimentally through wind tunnel testing or, depending upon the accuracy requirements, by numerically simulating the underlying fundamental equations of fluid dynamics. In this paper, the feasibility of applying Artificial Neural Networks (ANNs) to estimate the aerodynamic coefficients of differing airfoil geometries at varying Angle of Attack, Mach and Reynolds number is investigated. The ANNs are computational entities that have the ability to learn highly nonlinear spatial and temporal patterns. Therefore, they are increasingly being used to approximate complex real-world phenomenon. However, despite their significant breakthrough in the past few years, ANNs' spreading in the field of Computational Fluid Dynamics (CFD) is fairly recent, and many applications within this field remain unexplored. This study thus compares different network architectures and training datasets in an attempt to gain insight as to how the network perceives the given airfoil geometries, while producing an acceptable neuronal model for faster and easier prediction of lift, drag and moment coefficients in steady state, incompressible flow regimes. This data-driven method produces sufficiently accurate results, with the added benefit of saving high computational and experimental costs.


翻译:在任何航空飞行器设计的初步阶段,从正确的空气流体外推出去是任何航空飞行器设计初步阶段的一个关键步骤,因为其形状直接影响到飞机或旋翼飞机的总体空气动力特性。空气动力系数除了是一种性能的量度外,还用来设计飞行控制系统等额外的子系统,或预测气动不稳定等复杂的动态现象。有关系数可以通过风道试验或通过精确度要求实验获得,或通过数字模拟流动动态基本系数的基本方程。在本文中,应用人工神经力网络(ANNS)来估计不同气动神经动力特性的总体特性的可行性。除了是一种性能的测量外,空气动力系数还被用来设计飞行控制系统,或预测具有高度非线性空间和时间模式的复杂动态现象。因此,有关系数要么通过风道测试或根据精确性要求,要么通过数字模拟流动动态动态动态基本方程的基本方程。然而,尽管在过去几年中,ANNS在比较精确度精确度的神经网络(ANNF)领域应用空气动力系数系数系数系数系数系数系数系数系数系数, 不同的气流数据在这种精确度的精确度上,这种精确度的计算方法在计算中产生一种较高的数据流值值值值值值上,而这种速度的计算方法在最近的计算中,在计算中则在计算中产生一种高度值值值值的计算中产生一种数值流值值值值值值值值值值值值值值值值值值值数据,而使数据,而使数据在不断产生一种高的计算方法,这种数值流值的计算方法,在这种数值流中产生一种数值的计算方法中产生一种高值值数据,在不断进行上进行上进行上,在这种数值的数值的数值的数值的计算中,在这种数值的计算,在这种数值的计算中,在这种数值的数值的数值的计算中进行中进行中,在进行中进行上进行上进行上进行上进行上进行上进行上进行上进行上,在进行上进行上进行中,在进行上进行上进行上进行上进行上进行上进行上进行上,这种计算。

0
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
70+阅读 · 2021年12月8日
【新书】基于物理的深度学习,220页pdf
专知会员服务
148+阅读 · 2021年9月15日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
专知会员服务
123+阅读 · 2020年9月8日
机器学习速查手册,135页pdf
专知会员服务
336+阅读 · 2020年3月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN最新研究进展综述
机器学习研究会
25+阅读 · 2018年1月6日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
37+阅读 · 2021年2月10日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
26+阅读 · 2018年2月27日
Arxiv
4+阅读 · 2016年9月20日
VIP会员
相关VIP内容
【硬核书】树与网络上的概率,716页pdf
专知会员服务
70+阅读 · 2021年12月8日
【新书】基于物理的深度学习,220页pdf
专知会员服务
148+阅读 · 2021年9月15日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
专知会员服务
123+阅读 · 2020年9月8日
机器学习速查手册,135页pdf
专知会员服务
336+阅读 · 2020年3月15日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
相关资讯
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN最新研究进展综述
机器学习研究会
25+阅读 · 2018年1月6日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员