Determining who is at risk from a disease is important in order to protect vulnerable subpopulations during an outbreak. We are currently in a SARS-COV-2 (commonly referred to as COVID-19) pandemic which has had a massive impact across the world, with some communities and individuals seen to have a higher risk of severe outcomes and death from the disease compared to others. These risks are compounded for people of lower socioeconomic status, those who have limited access to health care, higher rates of chronic diseases, such as hypertension, diabetes (type-2), obesity, likely due to the chronic stress of these types of living conditions. Essential workers are also at a higher risk of COVID-19 due to having higher rates of exposure due to the nature of their work. In this study we determine the important features of the pandemic in California in terms of cumulative cases and deaths per 100,000 of population up to the date of 5 July, 2021 (the date of analysis) using Pearson correlation coefficients between population demographic features and cumulative cases and deaths. The most highly correlated features, based on the absolute value of their Pearson Correlation Coefficients in relation to cases or deaths per 100,000, were used to create regression models in two ways: using the top 5 features and using the top 20 features filtered out to limit interactions between features. These models were used to determine a) the most significant features out of these subsets and b) features that approximate different potential forces on COVID-19 cases and deaths (especially in the case of the latter set). Additionally, co-correlations, defined as demographic features not within a given input feature set for the regression models but which are strongly correlated with the features included within, were calculated for all features.


翻译:确定疾病风险的重要性在于保护在疫情爆发期间的易感人群。我们目前正处于 SARS-COV-2 疫情大流行中,其对全球产生了巨大影响,与其他人相比,一些社区和个人面临更高的严重后果和死亡风险。这些风险对低社会经济地位人群、医疗保健有限、患有慢性疾病(如高血压、2 型糖尿病和肥胖症)的人群影响更大,这可能是由于这些类型的生活条件导致的长期压力所致。基本工作者也因其工作性质而面临更高的 COVID-19 风险。在这项研究中,我们使用人口统计特征与每 10 万人口的累计病例和死亡之间的 Pearson 相关系数来确定加利福尼亚州疫情的重要特征,分析日期为 2021 年 7 月 5 日(分析日)。根据与每 10 万人口的病例或死亡相关的 Pearson 相关系数的绝对值,选择最高相关性的特征,使用这些特征创建回归模型。有两种方式:使用前 5 个特征和使用前 20 个特征进行筛选,以限制特征之间的相互作用。这些模型用于确定 a)这些子集最显著的特征和 b)近似于 COVID-19 病例和死亡可能的不同推动力的特征(尤其是在后者的情况下)。此外,计算了所有功能的共相关性,定义为不在给定输入特征集中但与所包含的特征强相关的人口统计特征。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
26+阅读 · 2022年12月26日
因果关联学习,Causal Relational Learning
专知会员服务
181+阅读 · 2020年4月21日
因果图,Causal Graphs,52页ppt
专知会员服务
242+阅读 · 2020年4月19日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关性≠因果:概率图模型和do-calculus
论智
31+阅读 · 2018年10月29日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月14日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关性≠因果:概率图模型和do-calculus
论智
31+阅读 · 2018年10月29日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员