We present a method for computing exact p-values for one-sided statistics of the Kolmogorov-Smirnov family. This includes the Higher Criticism statistic, one-sided weighted Kolmogorov-Smirnov statistics, and the one-sided Berk-Jones statistics. For a sample size of 10,000 our method takes merely 0.15 seconds to run and it can scale to sample sizes in the hundreds of thousands. This allows practitioners working on big data sets to use exact finite-sample computations instead of approximation schemes. Our work has other applications in statistics, including power analysis, finding $\alpha$-level thresholds, and the construction of confidence bands for the empirical distribution function. The method is based on a reduction to the boundary-crossing probability of a pure jump process and is also applicable to fields outside of statistics, for example financial risk modeling.
翻译:我们提出了一个计算Kolmogorov-Smirnov家族单方统计准确的p值的方法,其中包括高级批评统计、单向加权Kolmogorov-Smirnov统计和单向Berk-Jones统计。对于10 000个样本规模,我们的方法只需要0.15秒就可以运行,它可以按数十万个样本规模进行。这使得从事大数据集工作的从业者能够使用精确的有限抽样计算,而不是近似计划。我们的工作在统计方面还有其他应用,包括权力分析、找到$\alpha$的阈值和为经验分配功能构建信任带。这种方法的基础是降低纯跳跃过程的跨边界概率,并且也适用于统计以外的领域,例如金融风险模型。