Humans show high-level of abstraction capabilities in games that require quickly communicating object information. They decompose the message content into multiple parts and communicate them in an interpretable protocol. Toward equipping machines with such capabilities, we propose the Primitive-based Sketch Abstraction task where the goal is to represent sketches using a fixed set of drawing primitives under the influence of a budget. To solve this task, our Primitive-Matching Network (PMN), learns interpretable abstractions of a sketch in a self supervised manner. Specifically, PMN maps each stroke of a sketch to its most similar primitive in a given set, predicting an affine transformation that aligns the selected primitive to the target stroke. We learn this stroke-to-primitive mapping end-to-end with a distance-transform loss that is minimal when the original sketch is precisely reconstructed with the predicted primitives. Our PMN abstraction empirically achieves the highest performance on sketch recognition and sketch-based image retrieval given a communication budget, while at the same time being highly interpretable. This opens up new possibilities for sketch analysis, such as comparing sketches by extracting the most relevant primitives that define an object category. Code is available at https://github.com/ExplainableML/sketch-primitives.
翻译:人类在需要快速传递天体信息的游戏中表现出高度的抽象能力。 他们将电文内容分解成多个部分, 并在一个可解释的协议中将其传达到多个部分。 为了用这种能力装备机器, 我们提议了基于原始的 Sletch 抽象摘要任务, 其目标是在预算的影响下使用固定的绘图原始图谱来代表草图。 为了解决这个问题, 我们的原始- 匹配网络( PMN) 以自我监督的方式学习草图的可解释抽象性。 具体地说, PMN 绘制每把草图的触摸到一个特定数据集中最相似的原始部分, 预测一个将选定的原始图谱与目标曲线相匹配的缝合转换。 我们学习了这种中上到原始的绘图端到端到端与远程转换损失, 当原始图谱与预测的原始图谱精确地重建时, 这一点是最小的。 我们的PMNMN 抽象实验在素描写识别和草图图像检索方面达到最高性, 而同时, 也是高度可解释的。 这打开了新的草图分析的可能性, 例如分析, 比如/ MLMLML 。 定义了最原始的 。