In this paper we propose a definition of the distributional Riemann curvature tensor in dimension $N\geq 2$ if the underlying metric tensor $g$ defined on a triangulation $\mathcal{T}$ possesses only single-valued tangential-tangential components on codimension 1 simplices. We analyze the convergence of the curvature approximation in the $H^{-2}$-norm if a sequence of interpolants $g_h$ of polynomial order $k\geq 0$ of a smooth metric $g$ is given. We show that for dimension $N=2$ convergence rates of order $\mathcal{O}(h^{k+1})$ are obtained. For $N\geq 3$ convergence holds only in the case $k\geq 1$. Numerical examples demonstrate that our theoretical results are sharp. By choosing appropriate test functions we show that the distributional Gauss and scalar curvature in 2D respectively any dimension are obtained. Further, a first definition of the distributional Ricci curvature tensor in arbitrary dimension is derived, for which our analysis is applicable.
翻译:暂无翻译