What kind of questions about human mobility can computational analysis help answer? How to translate the findings into anthropology? We analyzed a publicly available data set of road traffic counters in Slovenia to answer these questions. The data reveals interesting information on how a nation drives, how it travels for tourism, which locations it prefers, what it does during the week and the weekend, and how its habits change during the year. We conducted the empirical analysis in two parts. First, we defined interesting traffic spots and designed computational methods to find them in a large data set. As shown in the paper, traffic counters hint at potential causes and effects in driving practices that we can interpret anthropologically. Second, we used clustering to find groups of similar traffic counters as described by their daily profiles. Clustering revealed the main features of road traffic in Slovenia. Using the two quantitative approaches, we outline the general properties of road traffic in the country and identify and explain interesting outliers. We show that quantitative data analysis only partially answers anthropological questions, but it can be a valuable tool for preliminary research. We conclude that open data are a useful component in an anthropological analysis and that quantitative discovery of small local events can help us pinpoint future fieldwork sites.
翻译:有关人类流动性的哪类问题可以算出分析的答案? 如何将调查结果转换成人类学? 我们分析了斯洛文尼亚公路交通柜台的一组公开数据,以解答这些问题。 这些数据揭示了令人感兴趣的信息,说明一个国家驱动器如何使用,它如何为旅游业旅行,它喜欢在哪个地点旅行,它在一周和周末做什么,它习惯在一年中如何改变。 我们用两个部分进行了经验分析。 首先,我们界定了有趣的交通点,并设计了计算方法,以在大型数据集中找到这些问题。正如文件所示,交通对准了我们可以从人类学上解释的驾驶做法的潜在原因和影响。 其次,我们利用集群来寻找类似交通柜台的团体,正如其日常简介所描述的那样。 将斯洛文尼亚公路交通的主要特征集中在一起。 我们使用两种定量方法,概括了该国道路交通的一般性质,并找出和解释有趣的外围点。 我们显示定量数据分析只部分地回答了人类学问题,但它可以成为进行初步研究的宝贵工具。 我们的结论是,开放数据是人类学分析的一个有用组成部分,可以确定未来小事件的量化发现地点。