The self-configuring nnU-Net has achieved leading performance in a large range of medical image segmentation challenges. It is widely considered as the model of choice and a strong baseline for medical image segmentation. However, despite its extraordinary performance, nnU-Net does not supply a measure of uncertainty to indicate its possible failure. This can be problematic for large-scale image segmentation applications, where data are heterogeneous and nnU-Net may fail without notice. In this work, we introduce a novel method to estimate nnU-Net uncertainty for medical image segmentation. We propose a highly effective scheme for posterior sampling of weight space for Bayesian uncertainty estimation. Different from previous baseline methods such as Monte Carlo Dropout and mean-field Bayesian Neural Networks, our proposed method does not require a variational architecture and keeps the original nnU-Net architecture intact, thereby preserving its excellent performance and ease of use. Additionally, we boost the segmentation performance over the original nnU-Net via marginalizing multi-modal posterior models. We applied our method on the public ACDC and M&M datasets of cardiac MRI and demonstrated improved uncertainty estimation over a range of baseline methods. The proposed method further strengthens nnU-Net for medical image segmentation in terms of both segmentation accuracy and quality control.
翻译:自我配置的 nnU- Net 已经在一系列医疗图像分割挑战中取得了领先性。 它被广泛视为选择模式和医学图像分割的强大基线。 但是,尽管其性能不同, nnU- Net并没有提供某种程度的不确定性来表明其可能的失败。 对于大规模图像分割应用来说,这可能会有问题,因为数据是多种多样的,而NNU- Net可能不经事先通知就失灵。 在这项工作中,我们采用了一种新颖的方法来估计NU- Net在医学图像分割方面的不确定性。我们提出了一种高效的巴伊西亚不确定性估计后重空间取样方案。与以前的基准方法不同,如蒙特卡洛脱落和中位海湾神经网络,我们提出的方法不需要一个变化结构来表明其可能的失败。 这对于大规模图像分割应用来说可能存在问题,因为数据是多种多样的,而NNU- Net 可能不经意想不到。 此外,我们采用一种新的方法,通过将多式图像分割性模型的边缘化来提高最初的分解性。 我们用的方法在公众的 ACDC 和 M和M- M- M- M- m- m- seal 图像分析方法进一步强化了心脏分析方法。