We introduce and study the Bicolored $P_3$ Deletion problem defined as follows. The input is a graph $G=(V,E)$ where the edge set $E$ is partitioned into a set $E_r$ of red edges and a set $E_b$ of blue edges. The question is whether we can delete at most $k$ edges such that $G$ does not contain a bicolored $P_3$ as an induced subgraph. Here, a bicolored $P_3$ is a path on three vertices with one blue and one red edge. We show that Bicolored $P_3$ Deletion is NP-hard and cannot be solved in $2^{o(|V|+|E|)}$ time on bounded-degree graphs if the ETH is true. Then, we show that Bicolored $P_3$ Deletion is polynomial-time solvable when $G$ does not contain a bicolored $K_3$, that is, a triangle with edges of both colors. Moreover, we provide a polynomial-time algorithm for the case that $G$ contains no blue $P_3$, red $P_3$, blue $K_3$, and red $K_3$. Finally, we show that Bicolored $P_3$ Deletion can be solved in $ O(1.84^k\cdot |V| \cdot |E|)$ time and that it admits a kernel with $ O(k\Delta\min(k,\Delta))$ vertices, where $\Delta$ is the maximum degree of $G$.
翻译:我们引入并研究 Bicolored $P_ 3$ Deletion 问题定义如下。 输入是一个图形 $G= (V, E) 美元, 边端设定为$G= (V, E) 美元, 边端设定为$E_ 美元, 蓝色边缘设定为$E_ 美元。 问题是, 我们是否可以在大多数美元边缘删除双色 $P_ 3美元, 这样美元并不包含双色 $P_ 3美元 。 这里, 双色 $P_ 3 美元是三面 美元 美元 。 我们显示 Bicarded $P_ 美元是硬的, 并且无法在 $$G3 上解析 。 然后, 我们显示 Bicard $P_ 3 美元是 美元, 美元是蓝色的三角 。 最后, 我们提供一个双色的美元, 美元, 数字是 数字是 。