This paper addresses a multi-robot planning problem in partially unknown semantic environments. The environment is assumed to have known geometric structure (e.g., walls) and to be occupied by static labeled landmarks with uncertain positions and classes. This modeling approach gives rise to an uncertain semantic map generated by semantic SLAM algorithms. Our goal is to design control policies for robots equipped with noisy perception systems so that they can accomplish collaborative tasks captured by global temporal logic specifications. To account for environmental and perceptual uncertainty, we extend a fragment of Linear Temporal Logic (LTL), called co-safe LTL, by including perception-based atomic predicates allowing us to incorporate uncertainty-wise and probabilistic satisfaction requirements directly into the task specification. The perception-based LTL planning problem gives rise to an optimal control problem, solved by a novel sampling-based algorithm, that generates open-loop control policies that are updated online to adapt to a continuously learned semantic map. We provide extensive experiments to demonstrate the efficiency of the proposed planning architecture.
翻译:本文涉及部分未知语义环境中的多机器人规划问题。 环境假定有已知的几何结构( 如墙壁), 并被固定的标记标志所占据, 位置和等级不确定 。 这种建模方法导致语义学 SLM 算法产生的语义图不确定 。 我们的目标是为配备噪音感知系统的机器人设计控制政策, 以便他们完成全球时间逻辑规格所捕捉的协作任务 。 为了说明环境和感知不确定性, 我们扩展了线性时空逻辑(LTL)的碎片, 称为共同安全 LTL, 包括基于感知的原子上游, 使我们能够直接将不确定性和概率性满意要求纳入任务规格 。 基于感知的LTL 计划问题产生了一种最佳控制问题, 由新型的基于取样的算法解决, 产生开放通道控制政策, 通过在线更新来适应不断学习的语义图。 我们提供了广泛的实验, 以展示拟议规划架构的效率 。