Syntactic parsing is the task of assigning a syntactic structure to a sentence. There are two popular syntactic parsing methods: constituency and dependency parsing. Recent works have used syntactic embeddings based on constituency trees, incremental top-down parsing, and other word syntactic features for brain activity prediction given the text stimuli to study how the syntax structure is represented in the brain's language network. However, the effectiveness of dependency parse trees or the relative predictive power of the various syntax parsers across brain areas, especially for the listening task, is yet unexplored. In this study, we investigate the predictive power of the brain encoding models in three settings: (i) individual performance of the constituency and dependency syntactic parsing based embedding methods, (ii) efficacy of these syntactic parsing based embedding methods when controlling for basic syntactic signals, (iii) relative effectiveness of each of the syntactic embedding methods when controlling for the other. Further, we explore the relative importance of syntactic information (from these syntactic embedding methods) versus semantic information using BERT embeddings. We find that constituency parsers help explain activations in the temporal lobe and middle-frontal gyrus, while dependency parsers better encode syntactic structure in the angular gyrus and posterior cingulate cortex. Although semantic signals from BERT are more effective compared to any of the syntactic features or embedding methods, syntactic embedding methods explain additional variance for a few brain regions.
翻译:同步分析是指定一个句子的合成结构的任务。 但是, 有两种流行的合成分析方法: 选区和依赖分析。 最近的工作使用了基于选区树的合成嵌入功能、 递增自上至下剖析, 以及其他词合成特征, 用于脑活动预测的合成特征, 这是因为基于文本模拟可以研究语系结构在大脑语言网络中如何代表该语系结构。 但是, 各个大脑地区, 特别是听力任务, 不同语系分析器的依附性或相对直角预测力, 尚未解析。 在此研究中, 我们调查三个设置中基于选区的大脑编码模型的预测力:(一) 选区的个别性能和依附合成合成合成综合分析特性, 以研究该语系语言网络在控制基本协同信号时如何代表该语系的内嵌入方法的功效, (三) 在控制其他区域时, 不同语系内嵌入方法的相对有效性是有效的, 。 进一步, 我们探索了内嵌系统内部的内嵌信息的相对重要性 。