Traditional approaches to next item and next basket recommendation typically extract users' interests based on their past interactions and associated static contextual information (e.g. a user id or item category). However, extracted interests can be inaccurate and become obsolete. Dynamic attributes, such as user income changes, item price changes (etc.), change over time. Such dynamics can intrinsically reflect the evolution of users' interests. We argue that modeling such dynamic attributes can boost recommendation performance. However, properly integrating them into user interest models is challenging since attribute dynamics can be diverse such as time-interval aware, periodic patterns (etc.), and they represent users' behaviors from different perspectives, which can happen asynchronously with interactions. Besides dynamic attributes, items in each basket contain complex interdependencies which might be beneficial but nontrivial to effectively capture. To address these challenges, we propose a novel Attentive network to model Dynamic attributes (named AnDa). AnDa separately encodes dynamic attributes and basket item sequences. We design a periodic aware encoder to allow the model to capture various temporal patterns from dynamic attributes. To effectively learn useful item relationships, intra-basket attention module is proposed. Experimental results on three real-world datasets demonstrate that our method consistently outperforms the state-of-the-art.
翻译:下一个项目和下一个篮子建议的传统方法通常会根据用户过去的互动和相关静态背景信息(如用户身份或项目类别)来获取用户的利益。 然而, 提取的利益可能不准确, 并会过时。 动态属性, 如用户收入变化、 项目价格变化( etc.) 随时间变化而变化。 这种动态可以内在地反映用户利益的演变。 我们认为, 模拟这些动态属性可以提高建议性能。 但是, 将这些动态属性适当纳入用户兴趣模型具有挑战性, 因为属性动态动态可以是多种多样的, 如时间间隔意识、 周期模式( etc. ), 并且它们代表用户从不同角度的行为, 与互动可能不同步地发生。 除了动态属性外, 每个篮子中的项目包含复杂的相互依存关系, 可能是有益的, 但不会被有效捕捉到。 为了应对这些挑战, 我们建议建立一个新型的动态属性强化网络( AnDa) 。 AnDa 单独编码动态属性和篮子项目序列。 我们设计一个定期了解的编码, 以便模型从动态属性中捕捉到各种时间模式。 。 要有效地学习真实的项目关系, 实验式的模型显示我们的三个模型中显示的状态模块中显示。