General Purpose computing on Graphical Processing Units (GPGPU) has resulted in unprecedented levels of speedup over its CPU counterparts, allowing programmers to harness the computational power of GPU shader cores to accelerate other computing applications. But this style of acceleration is best suited for regular computations (e.g., linear algebra). Recent GPUs feature new Ray Tracing (RT) cores that instead speed up the irregular process of ray tracing using Bounding Volume Hierarchies. While these cores seem limited in functionality, they can be used to accelerate n-body problems by leveraging RT cores to accelerate the required distance computations. In this work, we propose RT-DBSCAN, the first RT-accelerated DBSCAN implementation. We use RT cores to accelerate Density-Based Clustering of Applications with Noise (DBSCAN) by translating fixed-radius nearest neighbor queries to ray tracing queries. We show that leveraging the RT hardware results in speedups between 1.3x to 4x over current state-of-the-art, GPU-based DBSCAN implementations.
翻译:通用GPU计算在图形处理上的应用取得了比CPU同类的计算速度显著加快的效果,使得开发人员可以利用GPU着色器核心的计算能力来加速其他计算应用。但是,这种加速方式最适合规则计算(例如线性代数)。最近的GPU使用了新的光追踪(RT)核心,而不是使用包围体层次结构加快光线追踪的不规则过程。虽然这些核心在功能上似乎有限,但可以利用它们来加速利用光追核心计算相应距离的n倍体问题。在这项工作中,我们提出了第一个光追加速DBSCAN实现RT-DBSCAN。我们使用RT核心将定半径最近邻查询转换为光线追踪查询,从而加速具有噪声的应用程序的基于密度聚类(DBSCAN)。我们发现,利用RT硬件可使当前最先进的基于GPU的DBSCAN实现的速度提高1.3倍至4倍。