In order to determine the sparse approximation function which has a direct metric relationship with the $\ell_{0}$ quasi-norm, we introduce a wonderful triangle whose sides are composed of $\Vert \mathbf{x} \Vert_{0}$, $\Vert \mathbf{x} \Vert_{1}$ and $\Vert \mathbf{x} \Vert_{\infty}$ for any non-zero vector $\mathbf{x} \in \mathbb{R}^{n}$ by delving into the iterative soft-thresholding operator in this paper. Based on this triangle, we deduce the ratio $\ell_{1}$ and $\ell_{\infty}$ norms as a sparsity-promoting objective function for sparse signal reconstruction and also try to give the sparsity interval of the signal. Considering the $\ell_{1}/\ell_{\infty}$ minimization from a angle $\beta$ of the triangle corresponding to the side whose length is $\Vert \mathbf{x} \Vert_{\infty} - \Vert \mathbf{x} \Vert_{1}/\Vert \mathbf{x} \Vert_{0}$, we finally demonstrate the performance of existing $\ell_{1}/\ell_{\infty}$ algorithm by comparing it with $\ell_{1}/\ell_{2}$ algorithm.
翻译:为了确定与 $\ ell\ @% 0} 准norm 有着直接度量关系的稀薄近似函数, 我们引入了一个奇妙的三角形, 其侧面由 $\ Vert\ mathbf}\ Vert+% 0} 美元、 $\ Vert\ mathbf{x} $ 和 $\ Vert\ mathb{ x} 和 $\ vert\ morty} 任何非 0 矢量 $\ mathb{ x} $\ mathb{R} 组成。 基于此三角形, 我们推算出 $\ lt\ { {ellb} 和$\ print} 标准, 用于稀薄的信号重建, 并尝试给信号的宽度间隔。 考虑到 $\ {ellb} /\\\ {\\\\\ {\ \ \ \ \ \ \ \ \ \ \ \ \ \ f} y} 美元, 以 美元为角度的角值, = xxx 的运行的运行的值为底的值。