We establish a fundamental connection between optimal structure learning and optimal conditional independence testing by showing that the minimax optimal rate for structure learning problems is determined by the minimax rate for conditional independence testing in these problems. This is accomplished by establishing a general reduction between these two problems in the case of poly-forests, and demonstrated by deriving optimal rates for several examples, including Bernoulli, Gaussian and nonparametric models. Furthermore, we show that the optimal algorithm in these settings is a suitable modification of the PC algorithm. This theoretical finding provides a unified framework for analyzing the statistical complexity of structure learning through the lens of minimax testing.
翻译:暂无翻译