Deep learning has gained tremendous success and great popularity in the past few years. However, deep learning systems are suffering several inherent weaknesses, which can threaten the security of learning models. Deep learning's wide use further magnifies the impact and consequences. To this end, lots of research has been conducted with the purpose of exhaustively identifying intrinsic weaknesses and subsequently proposing feasible mitigation. Yet few are clear about how these weaknesses are incurred and how effective these attack approaches are in assaulting deep learning. In order to unveil the security weaknesses and aid in the development of a robust deep learning system, we undertake an investigation on attacks towards deep learning, and analyze these attacks to conclude some findings in multiple views. In particular, we focus on four types of attacks associated with security threats of deep learning: model extraction attack, model inversion attack, poisoning attack and adversarial attack. For each type of attack, we construct its essential workflow as well as adversary capabilities and attack goals. Pivot metrics are devised for comparing the attack approaches, by which we perform quantitative and qualitative analyses. From the analysis, we have identified significant and indispensable factors in an attack vector, e.g., how to reduce queries to target models, what distance should be used for measuring perturbation. We shed light on 18 findings covering these approaches' merits and demerits, success probability, deployment complexity and prospects. Moreover, we discuss other potential security weaknesses and possible mitigation which can inspire relevant research in this area.


翻译:深层次的学习系统在过去几年里取得了巨大成功和广受欢迎。但是,深层次的学习系统正在经历着若干固有的弱点,这些弱点可能威胁到学习模式的安全。深层次的运用进一步放大了影响和后果。为此目的,已经进行了许多研究,目的是详尽地查明内在弱点,随后提出可行的缓解措施。然而,对于这些弱点是如何发生的,以及这些攻击方法在攻击深层次的学习方面的效力,我们鲜为人知。为了揭露攻击方法中的安全弱点和援助,我们进行了深入学习,并对这些攻击进行了调查,分析以从多种观点得出一些结论。特别是,我们把重点放在与深层次学习的安全威胁有关的四类攻击:模型提取攻击、模型反向攻击、中毒攻击和对抗性攻击。对于每一种攻击,我们构建其基本工作流程以及对抗能力和攻击目标。我们设计了“活度”衡量标准,以比较攻击方法,据以进行定量和定性分析。我们从分析中找出攻击矢量中的重要和不可或缺的因素,例如如何减少对目标调查的难度,如何减少对目标发现,我们应使用哪些距离方法来衡量其他可能的概率。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
38+阅读 · 2020年3月10日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Arxiv
53+阅读 · 2018年12月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
相关论文
Top
微信扫码咨询专知VIP会员