We propose a new procedure for inference on optimal treatment regimes in the model-free setting, which does not require to specify an outcome regression model. Existing model-free estimators for optimal treatment regimes are usually not suitable for the purpose of inference, because they either have nonstandard asymptotic distributions or do not necessarily guarantee consistent estimation of the parameter indexing the Bayes rule due to the use of surrogate loss. We first study a smoothed robust estimator that directly targets the parameter corresponding to the Bayes decision rule for optimal treatment regimes estimation. This estimator is shown to have an asymptotic normal distribution. Furthermore, we verify that a resampling procedure provides asymptotically accurate inference for both the parameter indexing the optimal treatment regime and the optimal value function. A new algorithm is developed to calculate the proposed estimator with substantially improved speed and stability. Numerical results demonstrate the satisfactory performance of the new methods.
翻译:在无模型环境下,我们建议一种新的程序,用以推断最佳治疗制度的最佳处理制度,这种程序不需要具体说明结果回归模式。现有的最佳治疗制度无模型估计者通常不适于推断,因为它们不是非标准的无药性分布,或不一定保证因使用代用损失而一致估计贝耶斯规则的参数索引。我们首先研究一个平稳有力的估计者,直接针对与贝耶斯决定规则相对应的参数进行最佳治疗制度估计。这个估计者被证明具有一种无药性正常分布。此外,我们核查重新抽样程序是否为最佳治疗制度和最佳价值功能的参数索引提供了非标准准确的推断。我们开发了一种新的算法,以大大加快和稳定的速度计算拟议的估计者。数字结果显示新方法的令人满意的表现。