Monte Carlo sampling is a powerful toolbox of algorithmic techniques widely used for a number of applications wherein some noisy quantity, or summary statistic thereof, is sought to be estimated. In this paper, we survey the literature for implementing Monte Carlo procedures using quantum circuits, focusing on the potential to obtain a quantum advantage in the computational speed of these procedures. We revisit the quantum algorithms that could replace classical Monte Carlo and then consider both the existing quantum algorithms and the potential quantum realizations that include adaptive enhancements as alternatives to the classical procedure.
翻译:蒙特卡洛取样是一个强大的算法技术工具箱,它广泛用于若干应用中,其中寻求对其中的某些噪音数量或简要统计数字作出估计。在本文件中,我们调查了使用量子电路实施蒙特卡洛程序方面的文献,重点是在这些程序的计算速度方面获得量子优势的可能性。我们重新审视了可以取代古典蒙特卡洛的量子算法,然后考虑现有的量子算法和可能的量子认识,其中包括作为传统程序替代的适应性增强。</s>