Nowadays underwater vision systems are being widely applied in ocean research. However, the largest portion of the ocean - the deep sea - still remains mostly unexplored. Only relatively few image sets have been taken from the deep sea due to the physical limitations caused by technical challenges and enormous costs. Deep sea images are very different from the images taken in shallow waters and this area did not get much attention from the community. The shortage of deep sea images and the corresponding ground truth data for evaluation and training is becoming a bottleneck for the development of underwater computer vision methods. Thus, this paper presents a physical model-based image simulation solution, which uses an in-air texture and depth information as inputs, to generate underwater image sequences taken by robots in deep ocean scenarios. Different from shallow water conditions, artificial illumination plays a vital role in deep sea image formation as it strongly affects the scene appearance. Our radiometric image formation model considers both attenuation and scattering effects with co-moving spotlights in the dark. By detailed analysis and evaluation of the underwater image formation model, we propose a 3D lookup table structure in combination with a novel rendering strategy to improve simulation performance. This enables us to integrate an interactive deep sea robotic vision simulation in the Unmanned Underwater Vehicles simulator. To inspire further deep sea vision research by the community, we will release the source code of our deep sea image converter to the public.


翻译:目前,水下视觉系统正在被广泛应用于海洋研究。然而,海洋的最大部分,即深海,仍然大多尚未探索。由于技术挑战和巨大成本造成的物理限制,从深海摄取的图像数量相对较少。深海图像与浅水的图像大不相同,该地区没有受到社区的极大关注。深海图像和相应的地面真实数据缺乏,用于评估和训练的深海底图像数据正在成为开发水下计算机视觉方法的一个瓶颈。因此,本文展示了一种物理模型图像模拟解决方案,利用空气中质素和深度信息作为投入,以产生深海情景中机器人拍摄的海底图像序列。与浅水条件不同,人工照明在深海图像形成中发挥着关键作用,因为它对景色影响很大。我们的辐射测量图像形成模型既考虑到暗中共同移动的聚光点的衰减和分散效应。通过对水下图像形成模型的详细分析和评估,我们提出了一个3D的外观表结构,与深海洋情景中机器人拍摄的新型战略相结合。与浅海环境图像不同,人工照明在深海图像形成过程中,我们通过模拟模型将深海模型进行整合。让我们在海底模型中进行空间模拟。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Arxiv
0+阅读 · 2020年11月24日
Arxiv
0+阅读 · 2020年11月20日
Image Segmentation Using Deep Learning: A Survey
Arxiv
45+阅读 · 2020年1月15日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员