We explore the Collatz conjecture and its variants through the lens of termination of string rewriting. We construct a rewriting system that simulates the iterated application of the Collatz function on strings corresponding to mixed binary-ternary representations of positive integers. We prove that the termination of this rewriting system is equivalent to the Collatz conjecture. We also prove that a previously studied rewriting system that simulates the Collatz function using unary representations does not admit termination proofs via matrix interpretations. To show the feasibility of our approach in proving mathematically interesting statements, we implement a minimal termination prover that uses matrix/arctic interpretations and we find automated proofs of nontrivial weakenings of the Collatz conjecture. Finally, we adapt our rewriting system to show that other open problems in mathematics can also be approached as termination problems for relatively small rewriting systems. Although we do not succeed in proving the Collatz conjecture, we believe that the ideas here represent an interesting new approach.
翻译:我们通过终止字符串重写的透镜探索科拉茨猜想及其变体。 我们构建了一个重写系统, 模拟在字符串上反复应用科拉兹函数, 对应正数整数的混合二进制表达式。 我们证明这一重写系统的终止相当于科拉茨猜想式。 我们还证明, 先前研究过的一个重写系统, 使用非非全数表达式模拟科拉兹函数, 并不通过矩阵解释来接受终止证明。 为了显示我们在数学上证明有趣声明的方法的可行性, 我们实施了一个最小的终止证明程序, 使用矩阵/ 弧解释, 并找到自动证明Collatz conture非全方位弱化的证据。 最后, 我们调整了我们的重写系统, 以显示数学中的其他公开问题也可以作为相对小的重写系统的终止问题处理。 虽然我们没有成功证明科拉茨猜想, 但我们认为这里的想法代表了一种有趣的新方法。