To a good extent, words can be understood as corresponding to patterns or categories that appeared in order to represent concepts and structures that are particularly important or useful in a given time and space. Words are characterized by not being completely general nor specific, in the sense that the same word can be instantiated or related to several different contexts, depending on specific situations. Indeed, the way in which words are instantiated and associated represents a particularly interesting aspect that can substantially help to better understand the context in which they are employed. Scientific words are no exception to that. In the present work, we approach the associations between a set of particularly relevant words in the sense of being not only frequently used in several areas, but also representing concepts that are currently related to some of the main standing challenges in science. More specifically, the study reported here takes into account the words "prediction", "model", "optimization", "complex", "entropy", "random", "deterministic", "pattern", and "database". In order to complement the analysis, we also obtain a network representing the relationship between the adopted areas. Many interesting results were found. First and foremost, several of the words were observed to have markedly distinct associations in different areas. Biology was found to be related to computer science, sharing associations with databases. Furthermore, for most of the cases, the words "complex", "model", and "prediction" were observed to have several strong associations.


翻译:在很大程度上,文字可以被理解为与在特定时间和空间中特别重要或特别有用的概念和结构所出现的模式或类别相对应; 文字的特征不是完全一般或具体,因为同一词可以根据具体情况,根据不同的情况即时或联系于不同的背景; 事实上,词的即时和关联方式是一个特别有趣的方面,可以大大帮助更好地理解其使用的背景; 科学词也不例外。 在目前的工作中,我们接触一组特别相关的词语之间的关联,即不仅在若干领域经常使用,而且代表目前与科学方面一些主要长期挑战有关的概念; 更具体地说,这里报告的研究考虑到“管辖”、“模式”、“优化”、“兼容”、“通俗”、“通俗”、“通俗”、“通俗”、“非定”、“非定义”、“派特丹”和“数据”。 为了补充分析,我们还联系了一组不仅在几个领域经常使用,而且代表着一种特别相关的词汇。 许多令人感兴趣的词汇与科学方面的主要难题是:“协会”,首先和最明显的是“学会” 。

0
下载
关闭预览

相关内容

【干货书】计算机科学,647页pdf,Computer Science
专知会员服务
45+阅读 · 2021年5月10日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
【ICML 2020 】小样本学习即领域迁移
专知会员服务
77+阅读 · 2020年6月26日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
120+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月19日
Arxiv
0+阅读 · 2021年9月17日
Arxiv
26+阅读 · 2018年9月21日
VIP会员
相关VIP内容
【干货书】计算机科学,647页pdf,Computer Science
专知会员服务
45+阅读 · 2021年5月10日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
【ICML 2020 】小样本学习即领域迁移
专知会员服务
77+阅读 · 2020年6月26日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
120+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员