We present novel model reduction methods for rapid solution of parametrized nonlinear partial differential equations (PDEs) in real-time or many-query contexts. Our approach combines reduced basis (RB) space for rapidly convergent approximation of the parametric solution manifold, Galerkin projection of the underlying PDEs onto the RB space for dimensionality reduction, and high-order empirical interpolation for efficient treatment of the nonlinear terms. We propose a class of high-order empirical interpolation methods to derive basis functions and interpolation points by using high-order partial derivatives of the nonlinear terms. As these methods can generate high-quality basis functions and interpolation points from a snapshot set of full-order model (FOM) solutions, they significantly improve the approximation accuracy. We develop effective a posteriori estimator to quantify the interpolation errors and construct a parameter sample via greedy sampling. Furthermore, we implement two hyperreduction schemes to construct efficient reduced-order models: one that applies the empirical interpolation before Newton's method and another after. The latter scheme shows flexibility in controlling hyperreduction errors. Numerical results are presented to demonstrate the accuracy and efficiency of the proposed methods.
翻译:暂无翻译