Motion blur is one of the major challenges remaining for visual odometry methods. In low-light conditions where longer exposure times are necessary, motion blur can appear even for relatively slow camera motions. In this paper we present a novel hybrid visual odometry pipeline with direct approach that explicitly models and estimates the camera's local trajectory within the exposure time. This allows us to actively compensate for any motion blur that occurs due to the camera motion. In addition, we also contribute a novel benchmarking dataset for motion blur aware visual odometry. In experiments we show that by directly modeling the image formation process, we are able to improve robustness of the visual odometry, while keeping comparable accuracy as that for images without motion blur.
翻译:运动模糊度是视觉观察方法所面临的主要挑战之一。 在需要较长接触时间的低光条件下, 运动模糊度即使相对缓慢的摄影机动作也会出现。 在本文中, 我们展示了一种新型的混合视觉观察测量管道, 其直截了当, 直截了当地的模型和估计相机的局部轨道。 这使我们能够积极补偿由于相机动作而出现的任何运动模糊度。 此外, 我们还为运动模糊可见视觉观察测量提供了一套新的基准数据集。 在实验中, 我们通过直接模拟图像形成过程, 能够提高视觉观察测量的稳健性, 同时保持与图像相似的精确度, 而没有运动模糊度。