Conjoint analysis is a popular experimental design used to measure multidimensional preferences. Researchers examine how varying a factor of interest, while controlling for other relevant factors, influences decision-making. Currently, there exist two methodological approaches to analyzing data from a conjoint experiment. The first focuses on estimating the average marginal effects of each factor while averaging over the other factors. Although this allows for straightforward design-based estimation, the results critically depend on the distribution of other factors and how interaction effects are aggregated. An alternative model-based approach can compute various quantities of interest, but requires researchers to correctly specify the model, a challenging task for conjoint analysis with many factors and possible interactions. In addition, a commonly used logistic regression has poor statistical properties even with a moderate number of factors when incorporating interactions. We propose a new hypothesis testing approach based on the conditional randomization test to answer the most fundamental question of conjoint analysis: Does a factor of interest matter {\it in any way} given the other factors? Our methodology is solely based on the randomization of factors, and hence is free from assumptions. Yet, it allows researchers to use any test statistic, including those based on complex machine learning algorithms. As a result, we are able to combine the strengths of the existing design-based and model-based approaches. We illustrate the proposed methodology through conjoint analysis of immigration preferences and political candidate evaluation. We also extend the proposed approach to test for regularity assumptions commonly used in conjoint analysis.
翻译:联合分析是一种通用的实验性设计,用于衡量多层面偏好; 研究人员在控制其他相关因素的同时,研究兴趣因素的不同程度,同时控制其他相关因素,影响决策; 目前,有两种方法分析来自联合实验的数据,第一个方法侧重于估计每个因素的平均边际效应,而平均高于其他因素; 虽然这样可以直接进行基于设计的估计,但结果关键取决于其他因素的分布和互动效应如何汇总; 另一种基于模型的方法可以计算各种兴趣的数量,但研究人员必须正确指定模型,这是与许多因素和可能的互动进行联合分析的艰巨任务; 此外,通常使用的后勤回归在统计方面属性较差,即使纳入互动时有少量因素; 我们提出新的假设测试方法,以有条件随机化测试为基础,回答最根本的基于联合分析问题: 是否具有利害关系因素,以及互动效应如何汇总; 我们的方法只能基于各种因素的随机化,因此没有基于假设。 然而, 通常使用的后勤回归分析方法使研究人员能够使用任何测试性统计,包括基于复杂的机器学习模型的定期分析方法; 我们还通过共同分析,将现有的联合分析结果用于共同评估。