Search-based procedural content generation (PCG) is a well-known method used for level generation in games. Its key advantage is that it is generic and able to satisfy functional constraints. However, due to the heavy computational costs to run these algorithms online, search-based PCG is rarely utilized for real-time generation. In this paper, we introduce a new type of iterative level generator using machine learning. We train a model to imitate the evolutionary process and use the model to generate levels. This trained model is able to modify noisy levels sequentially to create better levels without the need for a fitness function during inference. We evaluate our trained models on a 2D maze generation task. We compare several different versions of the method: training the models either at the end of evolution (normal evolution) or every 100 generations (assisted evolution) and using the model as a mutation function during evolution. Using the assisted evolution process, the final trained models are able to generate mazes with a success rate of 99% and high diversity of 86%. This work opens the door to a new way of learning level generators guided by the evolutionary process and perhaps will increase the adoption of search-based PCG in the game industry.
翻译:以搜索为基础的程序内容生成(PCG) 是一种众所周知的方法,用于在游戏中进行水平生成。它的关键优势在于它具有通用性,能够满足功能限制。然而,由于在网上运行这些算法的计算成本很高,基于搜索的PCG很少用于实时生成。在本文中,我们采用机器学习的新型迭代级生成器。我们训练了一种模型,以模仿进化过程,并使用模型生成水平。这个经过培训的模式能够按顺序修改噪音水平,从而创造更好的水平,而不需要在推断过程中的健身功能。我们评估了我们经过培训的2D迷宫生成任务模型。我们比较了该方法的不同版本:在演化过程结束时(正常进化)或每100代(辅助进化)对模型进行培训,并将模型用作进化过程中的突变功能。我们利用协助的进化过程,最后经过培训的模型能够产生99%的成功率和86%的高多样性的迷宫。这项工作打开了学习水平发电机的大门,以进化过程为指导的新的学习层次发电机的大门,也许将增加在进化过程中采用以搜索的PCG游戏行业。