In this paper, we consider the binary classification problem via distributed Support-Vector-Machines (SVM), where the idea is to train a network of agents, with limited share of data, to cooperatively learn the SVM classifier for the global database. Agents only share processed information regarding the classifier parameters and the gradient of the local loss functions instead of their raw data. In contrast to the existing work, we propose a continuous-time algorithm that incorporates network topology changes in discrete jumps. This hybrid nature allows us to remove chattering that arises because of the discretization of the underlying CT process. We show that the proposed algorithm converges to the SVM classifier over time-varying weight balanced directed graphs by using arguments from the matrix perturbation theory.
翻译:在本文中,我们通过分布式支持-Vector-Machines(SVM)来考虑二进制分类问题,即培训一个拥有有限数据份额的代理网络,以便合作学习全球数据库的SVM分类器。代理只分享关于分类参数和当地损失函数梯度的处理信息,而不是原始数据。与现有工作相比,我们提出了一个连续时间算法,纳入离散跳跃中的网络地形变化。这种混合性质使我们能够消除由于基本CT过程的离散而产生的闲聊。我们表明,拟议的算法通过使用矩阵穿透理论的论据,与SVM分类器的相融合,而不是通过时间变化重量平衡的定向图表。