We provide rigorous and computable a-posteriori error estimates for first order finite-volume approximations of nonlinear systems of hyperbolic conservation laws in one spatial dimension. Our estimators rely on recent stability results by Bressan, Chiri and Shen and a novel method to compute negative order norms of residuals. Numerical experiments show that the error estimator converges with the rate predicted by a-priori error estimates.
翻译:我们提供了在一维空间非线性系统双曲守恒定律的一阶有限体积逼近的严密和可计算的后验误差估计。我们的估计依赖于Bressan,Chiri和Shen最近的稳定性结果以及计算残差负阶范数的新方法。数值实验表明,误差估计符合a-priori误差估计所预测的速率。