Generalized Linear Models (GLMs) have been used extensively in statistical models of spike train data. However, the \cm{maximum likelihood estimates of the model parameters and their uncertainty}, can \cm{be challenging to compute} in situations where response and non-response can be separated by a single predictor or a linear combination of multiple predictors. Such situations are likely to arise in many neural systems due to properties such as refractoriness and incomplete sampling of the signals that influence spiking. In this paper, we describe multiple classes of approaches to address this problem: \cm{using an optimization algorithm with a fixed iteration limit}, computing the maximum likelihood solution in the limit, Bayesian estimation, regularization, change of basis, and modifying the search parameters. We demonstrate a specific application of each of these methods to spiking data from rat somatosensory cortex and discuss the advantages and disadvantages of each. We also provide an example of a roadmap for selecting a method based on the problem's particular analysis issues and scientific goals.
翻译:通用线性模型(GLMS) 被广泛用于峰值列车数据的统计模型中。 然而, 模型参数及其不确定性的最大概率估计 \ cm{ 对模型参数及其不确定性的最大可能性估计 }, 在单个预测器或多个预测器的线性组合可以将响应和不响应分开的情况下, 可能具有挑战性 。 这些情况可能在许多神经系统中出现, 其特性包括影响弹射的信号的不稳定性和不完全抽样。 在本文中, 我们描述了解决这一问题的多种方法类别 :\ cm{ 使用有固定迭代限制的优化算法 }, 计算限值中的最大可能性解决方案 、 巴伊西亚估计、 规范化、 基础改变 和修改 搜索参数 。 我们展示了每种方法的具体应用, 以吸收来自大鼠蛋白质皮层的数据, 并讨论每种方法的利弊。 我们还提供了一个根据问题和科学目标选择方法的路线图示例。