Contemporary time series analysis has seen more and more tensor type data, from many fields. For example, stocks can be grouped according to Size, Book-to-Market ratio, and Operating Profitability, leading to a 3-way tensor observation at each month. We propose an autoregressive model for the tensor-valued time series, with autoregressive terms depending on multi-linear coefficient matrices. Comparing with the traditional approach of vectoring the tensor observations and then applying the vector autoregressive model, the tensor autoregressive model preserves the tensor structure and admits corresponding interpretations. We introduce three estimators based on projection, least squares, and maximum likelihood. Our analysis considers both fixed dimensional and high dimensional settings. For the former we establish the central limit theorems of the estimators, and for the latter we focus on the convergence rates and the model selection. The performance of the model is demonstrated by simulated and real examples.


翻译:当代时间序列分析发现,从许多领域来看,现代时间序列数据越来越高。例如,种群可以按照大小、书到市场比率和运行利润率进行分组,每个月进行三向偏差观测。我们建议对高价时间序列采用自动递减模式,自动递减条件取决于多线性系数矩阵。比较向量观测的传统方法,然后适用矢量自动递减模式,单向自动递减模式保留了向量结构,并接受相应的解释。我们引入了三个基于预测、最小方形和最大可能性的估测器。我们的分析既考虑到固定的维度和高维设置。对于前一种,我们设定了测算器的中心值,对于后一种,我们把重点放在趋同率和模型选择上。模型的性能通过模拟和真实的例子得到证明。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
9+阅读 · 2020年10月29日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员