Scientists always look for the most accurate and relevant answers to their queries in the literature. Traditional scholarly digital libraries list documents in search results, and therefore are unable to provide precise answers to search queries. In other words, search in digital libraries is metadata search and, if available, full-text search. We present a methodology for improving a faceted search system on structured content by leveraging a federation of scholarly knowledge graphs. We implemented the methodology on top of a scholarly knowledge graph. This search system can leverage content from third-party knowledge graphs to improve the exploration of scholarly content. A novelty of our approach is that we use dynamic facets on diverse data types, meaning that facets can change according to the user query. The user can also adjust the granularity of dynamic facets. An additional novelty is that we leverage third-party knowledge graphs to improve exploring scholarly knowledge.
翻译:科学工作者总是在文献中寻找他们查询的最准确和最相关的答案。 传统的学术数字图书馆在搜索结果中列出文件,因此无法提供准确的搜索查询答案。 换句话说, 数字图书馆的搜索就是元数据搜索,如果有全文搜索的话,就是全文搜索。 我们提出了一个方法,通过利用一个学术知识图联合会来改进结构化内容的面对面搜索系统。 我们在一个学术知识图之上应用了方法。 这个搜索系统可以利用第三方知识图的内容来改进对学术内容的探索。 我们方法的新颖之处是,我们在多种数据类型上使用动态的面孔,这意味着根据用户的查询可以改变方块。 用户还可以调整动态方块的颗粒性。 另一个新之处是我们利用第三方知识图来改进探索学术知识。