Batch Bayesian optimisation (BO) has shown to be a sample-efficient method of performing optimisation where expensive-to-evaluate objective functions can be queried in parallel. However, current methods do not scale to large batch sizes -- a frequent desideratum in practice (e.g. drug discovery or simulation-based inference). We present a novel algorithm, SOBER, which permits scalable and diversified batch BO with arbitrary acquisition functions, arbitrary input spaces (e.g. graph), and arbitrary kernels. The key to our approach is to reformulate batch selection for BO as a Bayesian quadrature (BQ) problem, which offers computational advantages. This reformulation is beneficial in solving BQ tasks reciprocally, which introduces the exploitative functionality of BO to BQ. We show that SOBER offers substantive performance gains in synthetic and real-world tasks, including drug discovery and simulation-based inference.
翻译:Batch Bayesian 优化(BO) 已经证明是一种能同时查询昂贵到评估客观功能的优化优化的样本有效方法(BO ) 。 但是,目前的方法并不规模到大批量规模 -- -- 在实践中是一种经常的分量(例如药物发现或模拟推论 ) 。 我们提出了一个新颖的算法,SOBER, 它允许可缩放和多样化的批量BO, 具有任意获取功能、 任意输入空间(例如图) 和任意内核。 我们的方法的关键是将BO的批量选择重新排入一个提供计算优势的BQ问题(BQ ) 。 这一重拟有利于对等解决BQ 任务, 从而将BO的剥削功能引入BQ。 我们表明SOBER在合成和现实世界性任务中提供了实质性的绩效收益, 包括药物发现和模拟推导。