We study the fixed-magnetization ferromagnetic Ising model on random $d$-regular graphs for $d\ge 3$ and inverse temperature below the tree reconstruction threshold. Our main result is that for each magnetization $η$, the free energy density of the fixed-magnetization Ising model converges to the annealed free energy density, itself the Bethe free energy of an Ising measure on the infinite $d$-regular tree. Moreover, the fixed-magnetization Ising model exhibits local weak convergence to this tree measure. A key challenge to proving these results is that for magnetizations between the model's spinodal points, the limiting tree measure corresponds to an unstable fixed point of the belief propagation equations. As an application, we prove that the positive-temperature Zdeborová--Boettcher conjecture on max-cut and min-bisection holds up to the reconstruction threshold: on the random $d$-regular graph, the expected fraction of bichromatic edges in the anti-ferromagnetic Ising model plus the expected fraction of bichromatic edges in the zero-magnetization ferromagnetic Ising model equals $1+o(1)$. A second application is completely determining the large deviation rate function for the magnetization in the Ising model on the random regular graph up to reconstruction. Finally, we use the precise understanding of this rate function to show that the Glauber dynamics for the full Ising model on the random graph mixes in sub-exponential time from uniformly random initialization, well into the non-uniqueness regime where the worst-case initialization mixing time is exponentially slow.


翻译:我们研究了在随机$d$-正则图上($d\\ge 3$)固定磁化强度的铁磁伊辛模型,其逆温度低于树重构阈值。主要结果表明:对于每个磁化强度$\\eta$,固定磁化强度伊辛模型的自由能密度收敛至退火自由能密度,后者即为无限$d$-正则树上伊辛测度的贝特自由能。此外,固定磁化强度伊辛模型在局部弱收敛意义下趋近于该树测度。证明这些结果的关键挑战在于,当磁化强度位于模型的旋节点之间时,极限树测度对应于置信传播方程的不稳定不动点。作为应用,我们证明了Zdeborová--Boettcher关于最大割与最小二分剖分的正温度猜想在重构阈值以下成立:在随机$d$-正则图上,反铁磁伊辛模型中双色边的期望比例与零磁化强度铁磁伊辛模型中双色边的期望比例之和等于$1+o(1)$。第二个应用是完全确定了随机正则图上伊辛模型磁化强度的大偏差率函数直至重构阈值。最后,我们利用对该率函数的精确理解,证明了随机图上完整伊辛模型的Glauber动力学在均匀随机初始化条件下,于非唯一性区域内(最坏情况初始化混合时间呈指数级缓慢)仍能以亚指数时间实现混合。

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
10+阅读 · 2021年11月3日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员