Antipsychotic drugs are widely used to treat serious mental illnesses, but concerns remain about their metabolic risks. Randomized trials have focused on the risk factors for diabetes rather than diabetes itself; observational studies have examined diabetes, but have pooled antipsychotics to compare classes or compared specific drugs to no drug. We estimate the causal effects of six antipsychotics in the absence of randomization within a cohort of nearly 39,000 adults with serious mental illness. Doubly-robust estimators, such as targeted minimum loss-based estimation (TMLE), require correct specification of either the treatment model or outcome model to ensure consistent estimation; however, common TMLE implementations estimate treatment probabilities using multiple binomial regressions rather than multinomial regression. We implement a TMLE estimator that uses multinomial treatment assignment and ensemble machine learning to estimate average treatment effects. Our implementation achieves superior coverage probability relative to the binomial implementation in simulation experiments with varying treatment propensity overlap and event rates. We evaluate the causal effects of the antipsychotics on 3-year diabetes risk or death. We find a safety benefit of moving from a second-generation drug considered among the safest of the second-generation drugs to an infrequently prescribed first-generation drug thought to pose a generally low cardiometabolic risk.


翻译:抗精神病药物被广泛用于治疗严重的精神疾病,但人们对其代谢风险仍然感到关切。随机试验侧重于糖尿病的风险因素,而不是糖尿病本身;观察研究已经检查了糖尿病,但将抗精神病药物集中起来,比较各类药物或将特定药物与没有药物进行比较。我们估计了在近39,000名患有严重精神疾病的成年人群中,没有随机化的六种抗精神病药物的因果关系。 Doubly-robust 估计者,如有针对性的最低损失估计(TMLE),要求正确说明治疗模式或结果模式,以确保一致估计;然而,共同的TMLE 实施对治疗的概率进行了评估,使用多种二元回归,而不是多元回归。我们实施一个TMLE 估计器,使用多种治疗任务和混合机学习来估计平均治疗效果。我们的实施比模拟实验中的双感反应概率高,其治疗倾向和事件率各不相同。我们评估了抗精神病模式对三年糖尿病第一代安全风险或第二代死亡率的因果关系。我们发现,从第二代低代药物安全风险到第二代低比例。我们通常会发现一种安全风险。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员