Antipsychotic drugs are widely used to treat serious mental illnesses, but concerns remain about their metabolic risks. Randomized trials have focused on the risk factors for diabetes rather than diabetes itself; observational studies have examined diabetes, but have pooled antipsychotics to compare classes or compared specific drugs to no drug. We estimate the causal effects of six antipsychotics in the absence of randomization within a cohort of nearly 39,000 adults with serious mental illness. Doubly-robust estimators, such as targeted minimum loss-based estimation (TMLE), require correct specification of either the treatment model or outcome model to ensure consistent estimation; however, common TMLE implementations estimate treatment probabilities using multiple binomial regressions rather than multinomial regression. We implement a TMLE estimator that uses multinomial treatment assignment and ensemble machine learning to estimate average treatment effects. Our implementation achieves superior coverage probability relative to the binomial implementation in simulation experiments with varying treatment propensity overlap and event rates. We evaluate the causal effects of the antipsychotics on 3-year diabetes risk or death. We find a safety benefit of moving from a second-generation drug considered among the safest of the second-generation drugs to an infrequently prescribed first-generation drug thought to pose a generally low cardiometabolic risk.
翻译:抗精神病药物被广泛用于治疗严重的精神疾病,但人们对其代谢风险仍然感到关切。随机试验侧重于糖尿病的风险因素,而不是糖尿病本身;观察研究已经检查了糖尿病,但将抗精神病药物集中起来,比较各类药物或将特定药物与没有药物进行比较。我们估计了在近39,000名患有严重精神疾病的成年人群中,没有随机化的六种抗精神病药物的因果关系。 Doubly-robust 估计者,如有针对性的最低损失估计(TMLE),要求正确说明治疗模式或结果模式,以确保一致估计;然而,共同的TMLE 实施对治疗的概率进行了评估,使用多种二元回归,而不是多元回归。我们实施一个TMLE 估计器,使用多种治疗任务和混合机学习来估计平均治疗效果。我们的实施比模拟实验中的双感反应概率高,其治疗倾向和事件率各不相同。我们评估了抗精神病模式对三年糖尿病第一代安全风险或第二代死亡率的因果关系。我们发现,从第二代低代药物安全风险到第二代低比例。我们通常会发现一种安全风险。