Motivated by recent findings that within-subject (WS) variability of longitudinal biomarkers is a risk factor for many health outcomes, this paper introduces and studies a new joint model of a longitudinal biomarker with heterogeneous WS variability and competing risks time-to-event outcome. Specifically, our joint model consists of a linear mixed-effects multiple location-scale submodel for the individual mean trajectory and WS variability of the longitudinal biomarker and a semiparametric cause-specific Cox proportional hazards submodel for the competing risks survival outcome. The submodels are linked together via shared random effects. We derive an expectation-maximization (EM) algorithm for semiparametric maximum likelihood estimation and a profile-likelihood method for standard error estimation. We implement scalable computational algorithms that can scale to biobank-scale data with tens of thousands of subjects. Our simulation results demonstrate that the proposed method has superior performance and that classical joint models with homogeneous WS variability can suffer from estimation bias, invalid inference, and poor prediction accuracy in the presence of heterogeneous WS variability. An application of the developed method to the large Multi-Ethnic Study of Atherosclerosis (MESA) data not only revealed that subject-specific WS variability in systolic blood pressure (SBP) is highly predictive of heart failure and death, but also yielded more accurate dynamic prediction of heart failure or death by accounting for both the mean trajectory and WS variability of SBP. Our user-friendly R package \textbf{JMH} is publicly available at \url{https://github.com/shanpengli/JMH}.


翻译:受最近发现的影响,即纵向生物标记在主体内部的变异性是许多健康结果的一个风险因素,本文介绍并研究了一个新的纵向生物标记联合模型,该模型具有各种WS变异性和相竞的风险时间到活动结果。具体地说,我们的联合模型包括一种线性混合效应,针对个人平均轨迹和纵向生物标记的多位置规模子模型,以及针对不同风险生存结果的半参数性能Cox成因比例危害子模型。子模型通过共享随机效应而联系在一起。我们为半准最大可能性估算和标准错误估计的剖析相似性方法得出了预期-最大概率(EM)的算法。我们采用可升级的计算算法,这种算法可以与生物银行规模的数据相比,有成千上万个主题。我们的模拟结果表明,拟议方法的性能优异性,具有均匀性WSA变化的典型联合模型可能因为估算偏差、无效性判断,而 salality准确的精确度在混杂的WSWS变异性中存在。我们开发的直流方法,而S-EBS的直位性预测,在大规模的S-EVS-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员