Masked Image Modelling (MIM) has been shown to be an efficient self-supervised learning (SSL) pre-training paradigm when paired with transformer architectures and in the presence of a large amount of unlabelled natural images. The combination of the difficulties in accessing and obtaining large amounts of labeled data and the availability of unlabelled data in the medical imaging domain makes MIM an interesting approach to advance deep learning (DL) applications based on 3D medical imaging data. Nevertheless, SSL and, in particular, MIM applications with medical imaging data are rather scarce and there is still uncertainty. around the potential of such a learning paradigm in the medical domain. We study MIM in the context of Prostate Cancer (PCa) lesion classification with T2 weighted (T2w) axial magnetic resonance imaging (MRI) data. In particular, we explore the effect of using MIM when coupled with convolutional neural networks (CNNs) under different conditions such as different masking strategies, obtaining better results in terms of AUC than other pre-training strategies like ImageNet weight initialization.
翻译:事实证明,在与变压器结构结合和有大量未贴标签的自然图像的情况下,蒙面图像建模是一种高效的自我监督的训练前学习范式(SSL),在使用变压器建筑和大量未贴标签的自然图像时,存在大量未贴标签的自然图像。由于难以获取和获取大量贴标签数据,加上医疗成像领域存在未贴标签的数据,因此MIM是一种有趣的方法,有助于根据3D医学成像数据推进深层学习(DL)应用。然而,SSL,特别是具有医学成像数据的MIM应用,相当稀少,而且仍然存在着不确定性。我们结合T2加权(T2w)磁共振成像(MRI)数据,对前列腺损伤分类进行了研究。我们特别探讨了在不同的条件下,例如不同的遮罩战略下,在AUC取得更好的结果,而不是像图像网重量初始化等其他培训前战略,使用MIM与革命神经网络(CNNs)结合时,使用MIM的影响。