We propose a two-stage approach Spec PC-CP to identify change points in multivariate time series. In the first stage, we obtain a low-dimensional summary of the high-dimensional time series by Spectral Principal Component Analysis (Spec-PCA). In the second stage, we apply cumulative sum-type test on the Spectral PCA component using a binary segmentation algorithm. Compared with existing approaches, the proposed method is able to capture the lead-lag relationship in time series. Our simulations demonstrate that the Spec PC-CP method performs significantly better than competing methods for detecting change points in high-dimensional time series. The results on epileptic seizure EEG data and stock data also indicate that our new method can efficiently {detect} change points corresponding to the onset of the underlying events.
翻译:我们建议采用两阶段方法Spec PC-CP来确定多变时间序列的变化点。 在第一阶段,我们通过光谱主元件分析(Spec-PCA)获得高维时间序列的低维摘要。 在第二阶段,我们使用二进制分解算法对光谱五氯苯组成部分进行累积总型测试。与现有方法相比,拟议方法能够在时间序列中捕捉铅-炉的关系。我们的模拟表明,Spec PC-CP方法比在高维时间序列中探测变化点的竞争性方法要好得多。癫痫缉获的EEEG数据和库存数据的结果也表明,我们的新方法能够有效地{探测}与基本事件的开始相应的变化点。