This study proposes a novel dynamical mechanism for pattern recognition discovered by interpreting a recurrent neural network (RNN) trained on a simple task inspired by the SET card game. We interpreted the trained RNN as recognizing patterns via phase shifts in a low-dimensional limit cycle in a manner analogous to transitions in a finite state automaton (FSA). We further validated this interpretation by handcrafting a simple oscillatory model that reproduces the dynamics of the trained RNN. Our findings not only suggest of a potential dynamical mechanism capable of pattern recognition, but also suggest of a potential neural implementation of FSA. Above all, this work contributes to the growing discourse on deep learning model interpretability.
翻译:暂无翻译