We present a new data-driven reduced-order modeling approach to efficiently solve parametrized partial differential equations (PDEs) for many-query problems. This work is inspired by the concept of implicit neural representation (INR), which models physics signals in a continuous manner and independent of spatial/temporal discretization. The proposed framework encodes PDE and utilizes a parametrized neural ODE (PNODE) to learn latent dynamics characterized by multiple PDE parameters. PNODE can be inferred by a hypernetwork to reduce the potential difficulties in learning PNODE due to a complex multilayer perceptron (MLP). The framework uses an INR to decode the latent dynamics and reconstruct accurate PDE solutions. Further, a physics-informed loss is also introduced to correct the prediction of unseen parameter instances. Incorporating the physics-informed loss also enables the model to be fine-tuned in an unsupervised manner on unseen PDE parameters. A numerical experiment is performed on a two-dimensional Burgers equation with a large variation of PDE parameters. We evaluate the proposed method at a large Reynolds number and obtain up to speedup of O(10^3) and ~1% relative error to the ground truth values.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员