Comparative effectiveness evidence from randomized trials may not be directly generalizable to a target population of substantive interest when, as in most cases, trial participants are not randomly sampled from the target population. Motivated by the need to generalize evidence from two trials conducted in the AIDS Clinical Trials Group (ACTG), we consider weighting, regression and doubly robust estimators to estimate the causal effects of HIV interventions in a specified population of people living with HIV in the USA. We focus on a non-nested trial design and discuss strategies for both point and variance estimation of the target population average treatment effect. Specifically in the generalizability context, we demonstrate both analytically and empirically that estimating the known propensity score in trials does not increase the variance for each of the weighting, regression and doubly robust estimators. We apply these methods to generalize the average treatment effects from two ACTG trials to specified target populations and operationalize key practical considerations. Finally, we report on a simulation study that investigates the finite-sample operating characteristics of the generalizability estimators and their sandwich variance estimators.


翻译:随机试验产生的比较有效性证据可能无法直接普遍适用于具有实质性利益的目标人群,因为在多数情况下,审判参与者没有从目标人群中随机抽取。出于需要将艾滋病临床试验小组(ACTG)进行的两次试验中的证据普遍化,我们考虑加权、回归和加倍有力的估计,以估计在美国艾滋病毒感染者特定人群中艾滋病毒干预的因果关系。我们侧重于非赦免性试验设计,并讨论对目标人群平均治疗效果的点估和差异估测战略。具体地说,在可概括性方面,我们从分析角度和经验角度表明,估计审判中已知的流行性分数不会增加加权、回归和双倍强度估测的每一种偏差。我们采用这些方法将两次试验的平均治疗效果普遍化到特定目标人群,并落实关键的实际考虑。我们报告一项模拟研究,该研究调查了通用估计器及其三明治差异估测器的有限性操作特征。

0
下载
关闭预览

相关内容

专知会员服务
40+阅读 · 2020年9月6日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【TED】同情心的进化论
英语演讲视频每日一推
3+阅读 · 2017年8月16日
Arxiv
0+阅读 · 2021年4月28日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【TED】同情心的进化论
英语演讲视频每日一推
3+阅读 · 2017年8月16日
Top
微信扫码咨询专知VIP会员