Robotic teleoperation is a key technology for a wide variety of applications. It allows sending robots instead of humans in remote, possibly dangerous locations while still using the human brain with its enormous knowledge and creativity, especially for solving unexpected problems. A main challenge in teleoperation consists of providing enough feedback to the human operator for situation awareness and thus create full immersion, as well as offering the operator suitable control interfaces to achieve efficient and robust task fulfillment. We present a bimanual telemanipulation system consisting of an anthropomorphic avatar robot and an operator station providing force and haptic feedback to the human operator. The avatar arms are controlled in Cartesian space with a 1:1 mapping of the operator movements. The measured forces and torques on the avatar side are haptically displayed directly to the operator. We developed a predictive avatar model for limit avoidance which runs on the operator side, ensuring low latency. Only off-the-shelf components were used to build the system. It is evaluated in lab experiments and by untrained operators in a small user study.


翻译:机器人远程操作是各种应用的关键技术。 它允许将机器人而不是人类送至偏远、可能危险的地方,同时仍然使用拥有巨大知识和创造力的人类大脑,特别是用于解决意外问题。 远程操作的主要挑战包括向人类操作者提供足够的反馈,以便了解情况,从而产生完全的浸入,以及向操作者提供适当的控制界面,以实现高效和稳健的任务完成。 我们提供了一个由人体形态变异机器人和操作者提供力量和顺畅反馈的操作站组成的双人远程操纵系统。 人工武器在Cartesian空间被控制,对操作者运动进行了1:1的绘图。 测量的阿凡达一侧的力量和托克斯直接向操作者展示。 我们开发了一个在操作者一侧运行的、可避免极限的预测动电容器模型,确保低静态。 我们只使用现成部件来建立系统。 它通过实验室实验和小用户研究中未经过训练的操作者对它进行了评估。

0
下载
关闭预览

相关内容

Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
开发者应当了解的18套机器学习平台
深度学习世界
5+阅读 · 2018年8月14日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Learning Discriminative Model Prediction for Tracking
VIP会员
相关VIP内容
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
开发者应当了解的18套机器学习平台
深度学习世界
5+阅读 · 2018年8月14日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员