Molecular dynamics (MD) simulations are widely used to study large-scale molecular systems. HPC systems are ideal platforms to run these studies, however, reaching the necessary simulation timescale to detect rare processes is challenging, even with modern supercomputers. To overcome the timescale limitation, the simulation of a long MD trajectory is replaced by multiple short-range simulations that are executed simultaneously in an ensemble of simulations. Analyses are usually co-scheduled with these simulations to efficiently process large volumes of data generated by the simulations at runtime, thanks to in situ techniques. Executing a workflow ensemble of simulations and their in situ analyses requires efficient co-scheduling strategies and sophisticated management of computational resources so that they are not slowing down each other. In this paper, we propose an efficient method to co-schedule simulations and in situ analyses such that the makespan of the workflow ensemble is minimized. We present a novel approach to allocate resources for a workflow ensemble under resource constraints by using a theoretical framework modeling the workflow ensemble's execution. We evaluate the proposed approach using an accurate simulator based on the WRENCH simulation framework on various workflow ensemble configurations. Results demonstrate the significance of co-scheduling simulations and in situ analyses that couple data together to benefit from data locality, in which inefficient scheduling decisions can lead up to a factor 30 slowdown in makespan.


翻译:分子动态模拟(MD)被广泛用于研究大型分子系统。HPC系统是进行这些研究的理想平台,但是,即使是现代超级计算机,达到必要的模拟时间尺度以探测稀有过程也具有挑战性。为了克服时间尺度的限制,长MD轨的模拟被在模拟组合中同时执行的多个短程模拟所取代。分析通常与这些模拟同时安排,以便高效处理运行时模拟产生的大量数据,这要归功于现场技术。执行一个模拟及其现场分析的工作流程组合,需要有效的联合安排战略和精密的计算资源管理,这样它们就不会相互减速。在本文中,我们提出了一个有效的方法来共同安排模拟模拟和现场分析,这样就能将工作流程的构成最小化。我们提出了一个新颖的方法,通过使用一个理论框架来模拟工作流程组合执行过程及其现场分析,我们用一个模拟模型来评估拟议的方法,在模拟模型模型中,在模拟模型模型中,可以共同展示关于精确的实地结果的进度分析,在模拟中,在模拟中,在模拟模型中,可以展示关于精确的实地结果的进度分析中,在模拟中,在模拟中,在模拟中,在模拟中,可以对各种结果进行。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月4日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员