Text attribute transfer is modifying certain linguistic attributes (e.g. sentiment, style, authorship, etc.) of a sentence and transforming them from one type to another. In this paper, we aim to analyze and interpret what is changed during the transfer process. We start from the observation that in many existing models and datasets, certain words within a sentence play important roles in determining the sentence attribute class. These words are referred to as \textit{the Pivot Words}. Based on these pivot words, we propose a lexical analysis framework, \textit{the Pivot Analysis}, to quantitatively analyze the effects of these words in text attribute classification and transfer. We apply this framework to existing datasets and models and show that: (1) the pivot words are strong features for the classification of sentence attributes; (2) to change the attribute of a sentence, many datasets only requires to change certain pivot words; (3) consequently, many transfer models only perform the lexical-level modification, while leaving higher-level sentence structures unchanged. Our work provides an in-depth understanding of linguistic attribute transfer and further identifies the future requirements and challenges of this task\footnote{Our code can be found at https://github.com/FranxYao/pivot_analysis}.


翻译:文本属性传输正在修改某句的某些语言属性( 如情绪、 风格、 作者等), 并将其从一种类型转换为另一种类型。 在本文中, 我们的目标是分析和解释在传输过程中变化的内容。 我们从这样的观察开始: 在许多现有的模型和数据集中, 句子中的某些词在确定句子属性类别方面起着重要作用。 这些词被称为 \ textit{ the Pivot Words} 。 基于这些主词, 我们提议了一个词汇分析框架,\ textit{ the Pivot 分析}, 以定量方式分析这些词在文本属性分类和传输中的效果。 我们将这个框架应用到现有的数据集和模型中, 并显示:(1) 语重词是判决属性分类的强性特征; (2) 更改句子属性, 许多数据集只需要更改某些参数; (3) 因此, 许多传输模型只执行词汇级修改, 而同时保持更高层次的句级结构不变。 我们的工作提供了对语言属性传输的深入理解, 并进一步确定了未来定义/ MAGI/ frotoimal 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
上百份文字的检测与识别资源,包含数据集、code和paper
数据挖掘入门与实战
17+阅读 · 2017年12月7日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Revealing the Dark Secrets of BERT
Arxiv
4+阅读 · 2019年9月11日
Arxiv
6+阅读 · 2019年9月4日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
上百份文字的检测与识别资源,包含数据集、code和paper
数据挖掘入门与实战
17+阅读 · 2017年12月7日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员