This paper proposes a novel productivity estimation model to evaluate the effects of adopting Artificial Intelligence (AI) components in a production chain. Our model provides evidence to address the "AI's" Solow's Paradox. We provide (i) theoretical and empirical evidence to explain Solow's dichotomy; (ii) a data-driven model to estimate and asses productivity variations; (iii) a methodology underpinned on process mining datasets to determine the business process, BP, and productivity; (iv) a set of computer simulation parameters; (v) and empirical analysis on labour-distribution. These provide data on why we consider AI Solow's paradox a consequence of metric mismeasurement.
翻译:本文提出了一个新的生产力估计模型,以评价生产链中采用人工智能(AI)组件的影响。我们的模型为处理“AI's's Solow's paradox”提供了证据。我们提供了(一) 理论和经验证据,以解释Solow的二分法;(二) 数据驱动模型,用以估计和评估生产率的变化;(三) 以采矿过程数据集为基础的方法,以确定业务流程、BP和生产率;(四) 一套计算机模拟参数;(五) 劳动力分配的经验分析。这些数据说明了为什么我们认为AI Solow的悖论是衡量错误的结果。