In this paper we introduce a novel Bayesian approach for linking multiple social networks in order to discover the same real world person having different accounts across networks. In particular, we develop a latent model that allow us to jointly characterize the network and linkage structures relying in both relational and profile data. In contrast to other existing approaches in the machine learning literature, our Bayesian implementation naturally provides uncertainty quantification via posterior probabilities for the linkage structure itself or any function of it. Our findings clearly suggest that our methodology can produce accurate point estimates of the linkage structure even in the absence of profile information, and also, in an identity resolution setting, our results confirm that including relational data into the matching process improves the linkage accuracy. We illustrate our methodology using real data from popular social networks such as Twitter, Facebook, and YouTube.


翻译:在本文中,我们引入了一种新颖的Bayesian方法,将多个社交网络连接起来,以便发现同一个真实世界的人在网络上有着不同的账户,特别是,我们开发了一个潜在模式,使我们能够共同确定网络和联系结构的特点,同时依赖关系数据和剖面图数据。与机器学习文献中的其他现有方法相比,我们的Bayesian实施过程自然通过事后概率为联系结构本身或其任何功能提供不确定的量化。我们的研究结果清楚地表明,即使没有剖面图信息,我们的方法也能对联系结构得出准确的点数估计,而且在身份分辨率设定中,我们的结果证实,将相关数据纳入匹配过程可以提高联系的准确性。我们用诸如Twitter、Facebook和YouTube等流行的社会网络提供的真实数据来说明我们的方法。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
专知会员服务
29+阅读 · 2021年8月2日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
42+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
249+阅读 · 2020年5月18日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月16日
Arxiv
0+阅读 · 2022年1月15日
VIP会员
相关VIP内容
专知会员服务
29+阅读 · 2021年8月2日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
42+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
249+阅读 · 2020年5月18日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员