Analytics corresponds to a relevant and challenging phase of Big Data. The generation of knowledge from extensive data sets (petabyte era) of varying types, occurring at a speed able to serve decision makers, is practiced using multiple areas of knowledge, such as computing, statistics, data mining, among others. In the Big Data domain, Analytics is also considered as a process capable of adding value to the organizations. Besides the demonstration of value, Analytics should also consider operational tools and models to support decision making. To adding value, Analytics is also presented as part of some Big Data value chains, such the Information Value Chain presented by NIST among others, which are detailed in this article. As well, some maturity models are presented, since they represent important structures to favor continuous implementation of Analytics for Big Data, using specific technologies, techniques and methods. Hence, through an in-depth research, using specific literature references and use cases, we seeks to outline an approach to determine the Analytical Engineering for Big Data Analytics considering four pillars: Data, Models, Tools and People; and three process groups: Acquisition, Retention and Revision; in order to make feasible and to define an organization, possibly designated as an Analytics Organization, responsible for generating knowledge from the data in the field of Big Data Analytics.
翻译:在大数据领域,分析也被视为一个能够为各组织增加价值的过程。除了价值的展示外,分析还应考虑支持决策的操作工具和模型。为了增加价值,分析也应考虑确定大数据分析的分析工程的方法。为了增加价值,分析器还作为一些大数据价值链的一部分,例如国家信息系统和信息系统公司提出的信息价值链等,在本篇文章中详细介绍的信息价值链。此外,还介绍了一些成熟模型,因为它们是支持持续实施大数据分析的重要结构,使用具体技术、技术和方法。因此,通过深入研究,利用具体的文献参考和使用案例,我们力求概述确定大数据分析分析的分析工程的方法,其中考虑到四个支柱:数据、模型、工具和人;以及三个流程组:采购、保留和修订,本篇文章对此作了详细介绍。此外,还介绍了一些成熟模型,因为它们代表了支持持续实施大数据分析的重要结构,使用具体技术、技术和方法。因此,我们力求通过深入研究,利用具体的文献参考和使用案例,概述确定大数据分析的分析工程的分析工程的方法,同时考虑到四个支柱:数据、模型、工具和人;以及三个流程组:采购、保留和修订;从大规模数据组织中以负责任的方式生成数据,确定一个指定的实地。