Distributed training has become a pervasive and effective approach for training a large neural network (NN) model with processing massive data. However, it is very challenging to satisfy requirements from various NN models, diverse computing resources, and their dynamic changes during a training job. In this study, we design our distributed training framework in a systematic end-to-end view to provide the built-in adaptive ability for different scenarios, especially for industrial applications and production environments, by fully considering resource allocation, model partition, task placement, and distributed execution. Based on the unified distributed graph and the unified cluster object, our adaptive framework is equipped with a global cost model and a global planner, which can enable arbitrary parallelism, resource-aware placement, multi-mode execution, fault-tolerant, and elastic distributed training. The experiments demonstrate that our framework can satisfy various requirements from the diversity of applications and the heterogeneity of resources with highly competitive performance. The ERNIE language model with 260 billion parameters is efficiently trained on thousands of AI processors with 91.7% weak scalability. The throughput of the model from the recommender system by employing the heterogeneous pipeline asynchronous execution can be increased up to 2.1 times and 3.3 times that of the GPU-only and CPU-only training respectively. Moreover, the fault-tolerant and elastic distributed training have been successfully applied to the online industrial applications, which give a reduction of 34.49% in the number of failed long-term training jobs and an increase of 33.91% for the global scheduling efficiency in the production environment.
翻译:34. 根据统一分布式图表和统一组群目标,我们的适应框架配备了全球成本模型和全球规划师,可以任意平行、资源认知配置、多模式执行、容错和弹性分配培训。实验表明,我们的框架可以满足各种应用的多样性和资源多样性的不同要求,特别是具有高度竞争力的业绩。 具有2 600亿参数的欧洲环境研究所语言模型在数千个AI处理器上进行了有效的培训,其范围小于91.7 %。从建议系统到应用模型的升级,可以使用全球不同周期培训的混杂性、高标准化、高标准化、高标准化、高标准化、高标准化、高标准化、高标准化、高标准化、高标准化、高标准化、高标准化、高标准化、高标准、高标准化、高标准化、高标准化、高标准化、高标准化、高标准化、高标准化、高标准化、高标准化、高标准化、高标准化、高标准化、高标准化、高标准化、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准执行、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准、高标准